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This is an experimental and numerical study of steady free convection in a porous 
medium, a system dominated by a single non-linear process, the advection of heat. 
The paper presents results on three topics: (1) a system uniformly heated from 
below, for which the flow is cellular, as in the analogous BBnard-Rayleigh flows, 
(ii) the role of end-effects, and (iii) the role of mass discharge. Measurements of 
heat transfer are used to establish further the validity of the numerical scheme 
proposed by the author (1966a), while the other flows allow a more extensive 
study of the numerical scheme under various boundary conditions. The results 
are very satisfactory even though only moderately non-linear problems can be 
treated at  present. 

The main new results are as follows. For the Rayleigh-type flow, above a 
critical Rayleigh number of about 40, the heat transferred across the layer is 
proportional to the square of the temperature difference across the layer and is 
independent of the thermal conductivity of the medium or the depth of the layer. 
This result is modified when the boundary-layer thickness is comparable to the 
grain size of the medium. The investigation of end-effects reveals variations in 
horizontal wave-number and a pronounced hysteresis and suggests an alternative 
explanation of some observations by Malkus (1954). 

1. Introduction 
The main aim of this paper is a study of the application of the numerical 

method proposed by the author (Elder 1 9 6 6 ~ )  to free convection in a porous 
medium. From the point of view of fluid mechanics, the principal interest in 
convection in a porous medium is that the system is non-linear solely because of 
the advection of heat. This is therefore one of the simplest non-linear elliptic 
systems. 

The paper is concerned with the flow in a homogeneous horizontal slab which 
is heated from below. It is mainly in this respect that the flow differs from that of 
the previous study (Elder 1966a) in which a uniform temperature difference was 
maintained across a vertical slot filled with viscous fluid. In  that case the flow is 
largely uni-cellular. The present case is more complex in that, as in the BBnard- 
Rayleigh problem, there is no motion below the critical Rayleigh number, the 
consequent motion is multi-cellular and is considerably affected by end-effects. 
It is of interest to study these effects for a flow in which there is no advection 



30 J. W. Elder 

or diffusion of vorticity especially in so far as these flows show similar behaviour 
to the convection of a viscous fluid, in particular one with large Prandtl 
number. 

The above point of view has not been the original motivation for this and other 
studies. Ever since the original work of Darcy (1856) there have been numerous 
studies by hydrologists, petroleum geologists, chemical engineers, geologists and 
geophysicists of flow in a porous medium. Until quite recently most of these 
studies have been for isothermal flow (see, for example, the review by Richardson 
1961), but in the last twenty years or so geophysicists and others have begun to 
consider the possibility that convection in a porous medium occurs within the 
earth. Two principal areas of interest have so far emerged. The first and better 
known is related to the problem of so-called geothermal or hot-spring areas. An 
early study was that of Einarsson (1942). The possibility of free convection in 
a porous medium uniformly heated from below, and the similarity to the Benard- 
Rayleigh problem, was pointed out by Horton & Rogers (1945) and Lapwood 
(1948). Wooding (1957 and following papers) has greatly extended these studies, 
Elder (1958) and Schneider (1963) have performed laboratory experiments and 
Donaldson (1962) has given some numerical calculations. The second, and much 
more speculative, possibility is that the earth’s mantle behaves like a porous 
medium. This idea has been used in a discussion of earthquake sources by Frank 
(1965) and in a model of vulcanism by Elder (1966 b).  These geophysical studies 
have recently been reviewed by the author (1965). 

The problem is formulated in $2 .  The laboratory measurements of heat 
transfer are described in $ 3  and a similar numerical investigation is given in 5 4. 
I n  the previous study it was soon found that most of the difficulties arose in the 
application of the boundary conditions. It therefore seemed desirable to study 
flows produced by a variety of boundary conditions. This is largely the purpose 
of § $ 5  and 6, an investigation of end effects and mass discharge; followed by 
a discussion in $ 7. 

2. Formulation of the problem 
Consider the steady motion of a fluid of kinematic viscosity v, which saturates 

a horizontal slab of homogeneous porous material of thickness H ,  horizontal 
extent E ,  permeability k, and diffusivityt K,. Let all the walls of the slab be held 
at temperature To except for a centrally placed portion of the base of the slab of 
width L held at temperature (To + AT).  Making the Boussinesq approximation, 
that density variations are significant only in their generation of buoyancy forces, 
and that other fluid parameters are independent of temperature, it is readily seen 
by inspection of the equations of motion that the problem is specified by: the 
acceleration due to buoyancy ygAT, where y is the coefficient of cubical expan- 
sion; klv; HIK,; E ;  L; and the acceleration due to gravity g. This last quantity 
must be included for problems involving mass discharge. Hence since these six 

t It is important to note that K, = K,/pc, where K ,  is the thermal conductivity of the 
saturated medium and pc is the thermal capacity of the fluid. We use K,  K for the thermal 
diffusivity and thermal conductivity of the fluid. 
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parameters involve only the dimensions of length and time, four dimensionless 
parameters are required to define the problem. A convenient set is 

(1) i 
A = kygATH/Kmv (Rayleigh number), 
B = gHk/K,v (discharge number), 
e = E/H and 1 = L / H  (aspect ratios). 

The only point of novelty here is the parameter B, to be called the discharge 
number, which is a measure of the ratio of the imposed pressure forces to the 
viscous forces, and can arise in problems involving mass discharge. 

The field variables can be conveniently made dimensionless by choosing uni ts  
of length, temperature, pressure, velocity 

H ,  A T ,  PovKJk, KmIH, 

where po is the density of the fluid at temperature To. For steady motion the field 
equations, simplified by the Boussinesq approximation, can be written with the 
above units in dimensionless form (Wooding 1957) 

v.q = 0, 

9. ve = VW, 
O =  -Vp+AOk-q, 

where q is the velocity, p is the departure of the pressure from its value when 
A = 0 , 8  is the temperature, and k is a unit vertical vector. We note that there is 
no Prandtl number effect since there are no inertia forces. 

In  two dimensions, erecting a Cartesian co-ordinate frame Oxyz so that motion 
is in planes y = constant and z is measured vertically upwards, and introducing 
a stream function $, we have 

w = AO,, (3a) 

VZ$ = w ,  (3 b )  

v = a($,@, (3c) 

v2e = v, ( 3 4  

where 8 is the Jacobian operator and x is the horizontal co-ordinate. Note that 
q = ( -  $B, $,) and the vorticity w = V x q = - jw,  where j is the unit vector 
parallel to the y-axis (into the paper in the diagrams shown here). The source 
term V is the rate of generation of temperature and is produced solely by advec- 
tion. In the discussion a($., 8) is called the advection. We note that vorticity is 
generated by the horizontal gradient of the buoyancy force and that there is no 
advection or diffusion of vorticity. 

We consider two arrangements of the boundary conditions. The first is for 
impermeable walls for which in the two-dimensional analysis: $ = 8 = 0 on the 
walls except that 8 = 1 on 1x1 < +l, x = 0. The second is the same except that 
we allow parts of the walls to be permeable. This is discussed more fully in 9 6. 
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3. Experimental study of heat transfer 
3.1. Experimental method 

Most of the experimental work was performed in containers filled with uniform 
granular material. Most convenient were glass spheres of diameter 3,5,8,18mm. 
However, in the largest apparatus with L = 35.6 em and E = 180 cm expanded 
plastic balls (styropor) of diameter 6mm, glued into a porous matrix, were used. 
In  all these cases the apparatus was of circular section. 

The upper surfaces of the apparatuses were hollow metal cavities through 
which water was circulated from a thermostatic unit which controlled To to 
better than 2 0.1 "C. The temperature difference across the apparatus was 
measured with a thermocouple and a potentiometer, which could be read to a 
precision of i- 0.01 "C. In  spite of this, absolute values of A are known only to 

10 % largely owing to uncertainty in k .  
All the apparatuses used here were heated electrically, by placing the heater 

resistance in a bridge so that its resistance could always be noted. The current 
supplied to the bridge was determined by measuring, with a potentiometer, the 
voltage developed across a standard resistance. Thus the power input Q could 
be measured to  better than 1 yo, but uncertainty in the small heat loss through 
the base of the apparatus makes the error in Q about i- 5 %. 

A less extensive set of measurements were made in a Hele-Shaw cell. Hele- 
Shaw (1898) showed that in a cavity of width b < H, L the motion is similar to 
that in a porous medium. Some interesting studies using a Hele-Shaw cell have 
been reported by Saffman & Taylor (1958) and Wooding (1960a). The present 
experiments confirm this prediction for the case of non-isothermal flows-the 
phenomena found here with the beds of spheres can be duplicated in a Hele-Shaw 
cell. Only two-dimensional motions can be investigated, but it is a simple matter 
to observe the motion with suspended aluminium particles. 

Similar arguments to those used by Hele-Shaw can be applied to the equations 
for non-isothermal flow (Wooding 1960a). Let U be the velocity scale and S the 
smallest length scale of the motion, then three conditions are necessary: 

(9 b/& < 1, 

(ii) the Reynolds number 
(iii) the Peclet number 

Ub2/vS -g 1, 

Ub2/K8 @ 1. 

These conditions ensure that there is negligible advection of vorticity and rapid 
diffusion of vorticity and heat across the flow. For the experiments described 
below departure from the Hele-Shaw approximation occurred when b/6 2 1. 

3.2. Heat transfer for 1 $ 1-f 
The quantity of first interest is the Nusselt number N ,  a dimensionless thermal 
conductivity defined by 

Q = N K ,  (heated area) ATIH, (4) 
-t A brief description of the data of 3 3 has already been given in Elder (1965). 
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where Q is the power transferred across the slab. Figure 1 gives data obtained: 
(a )  in a medium of glass spheres, ( b )  in a Hele-Shaw cell. The accuracy of the 
laboratory measurements is of order k 10%. Only a small portion of the 
laboratory data is presented here. However, it is worth remarking that no 
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FIGURE 1. Heat-transfer characteristic N ( A ) ,  Nusselt number as a function of Rayleigh 
number: (a)  granular material; 0, 8 mm spheres; 0 ,  18 mm spheres; ( b )  Hele-Shaw cell. 
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significant differences were found in N ( A )  for media of sand, gravel, rashid rings, 
peas and children's marbles (the spheres of diameter 18 mm referred to in figure 1). 
The present results for granular material are similar to those of Schneider (1963). 

3.3. Heat transfer : quadratic region 

The heat-transfer measurements for A < 5000 and 1 9 1 are shown in figure 1. 
Below A + 40, N + 1 so that the heat transfer is entirely by conduction. Indeed, 
the measurements here can be used to determine K,. At A = 40 there is an 
abrupt change in N ( A )  ; these experiments give this initial value 
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FIGURE 2. Heat-transfer characteristic N*(A*) in the viscous-flow region with Nusselt 
number N* and Eayleigh number A* based on the fluid properties alone: + , 6 mm 
styropor balls, L = H = 35.6 cm, diameter of slab 180 cm; 0, 3 mm styropor balls, 
diameter of slab 16 cm; x , 5 mm glass spheres, L = H = 8.0 em, diamcter of slab, 16 cm. 

consistent with the prediction of 4n2 of Lapwood (1948). Above A, the points lie 
reasonably close to 

In  dimensional form (6) becomes 

N = A140 & 10 yo. (6) 

&/(heated area) = k p y g ( A T ) 2 / 4 0 ,  (7)  

a quadratic relation between Q and A T .  We note that Q is independent of H 
and K,. 

3.4. Heat transfer : viscous boundary-layer region 

Above some value of the Rayleigh number, A > A ,  say, the experimental points 
begin to fall below (6). Some of these measurements are also shown in figure 1. 
This behaviour has also been noted by Schneider (1963). It is no longer possible 
to correlate the data of N ( A )  solely by the parameters (1) .  Clearly an additional 
quantity is required. The initial departure from (6) closely follows NIX A t ,  as in 
simple viscous convection, suggesting the use of A* E y g A T H 3 / m ,  the viscous 
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flow Rayleigh number. This has been done in figure 2-where N", A* are now 
defined in terms of the parameters of the fluid alone. 

The initial departure from (6) now follows 

N*/A* i  = 0.26 & 0.02, (8) 

remarkably close to the value 0.24 found by Silveston (1958) for viscous laminar 
convection between horizontal planes. At much higher values of A* the curve 
follows 

again reasonably close to the viscous flow value of 0.06 given by Jakob (1949). 
The data for (9) were obtained with L = 35.6 em and 6 mm plastic balls as the 
medium. 

N*/A** = 0.1 f 0.02 (9) 

Assuming both (6), (8) valid at  A ,  we have 

A ,  + 20(H2/k)*/&, (10) 
where 5 = .,I.. Writing at  A ,  the Nusselt number N, = H/26,, we find typically 
in these experiments 8,lA + 0.2, where A is the diameter of the spheres. It is not 
surprising that relations of the form (8) and (9) occur when the boundary-layer 
thickness is somewhat smaller than the scale of the porous medium. As noted by 
Wooding (1958) it is to be expected that equations (2) are no longer valid within 
a distance of order A from a boundary-indeed this is implicit in the definition 

Here the relations (8), (9) are merely an inconvenience in so far as they limit 
the range of A accessible to a given apparatus. However, in the problem of con- 
vection in the earth's mantle, assuming that the mantle behaves like a porous 
medium, the change from porous to viscous flow may be of importance in 
describing the region between the lower and upper mantle. 

of q. 

4. Numerical study of heat transfer 
4.1. Numerical method 

A suitable finite difference representation of (3) is readily found by well-known 
methods (Fox 1962). The equations are solved as written in (3) in the order 
(a ,  b,  c, d ,  a,  . . .) until the solution has converged or the calculation is terminated 
when the solution begins to diverge. The solution of the Poisson equations ( 3 b ) ,  
( 3 4  is very straightforward since both @ ( = 0 )  and 0 are given on the boundary. 
Leibmann's extrapolated method with alternating directions of scan is used. 
These matters are discussed elsewhere (Elder 1966a). 

Most of the solutions are for a mesh spacing of order 1/20 for which the accuracy 
is of order 1 yo. Solutions are generally terminated when values over the mesh 
change by less than 0.1 yo. 

4.2. Convergence of the solutions 

The convergence of the solutions is indicated in figure 3 (obtained during the 
solutions for figures 4, 5). A parameter typical of the temperature field, the 
Nusselt number, is plotted against the number of scans of (3) for various Rayleigh 

3- 2 
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numbers. .It is seen that the rate of convergence is more rapid a t  higher values of 
A and that for A 2 80 there is some overshoot. At Rayleigh numbers near the 
critical value of 47r2 (Lapwood 1948) the convergence is extremely slow. It is of 
interest to comment on this observation. 
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FIGURE 3. Convergcnce of the numerical solution for I 1. Nussclt number N as a function 
of the numbor of scans s at various Raylcigh numbers A .  Values scaled using N o  = 1 and 
the final value N,. Mesh 21 x 21. 

As Garabedian (1956) has pointed out, the solution of an iterative procedure, 
such as that used here, converges in a manner similar to that of the corresponding 
time-dependent problem at large times. We may obtain a rather crude estimate 
of the relation between the number of scans s and the time t by solving (3) with 
the same initial conditions (0 and $ = 0 everywhere except for 0 = 1 on x = 0 )  
a t  A = 0. We find that the final solution is approached exponentially so that, for 
example, if N is the Nusselt number, N, - N N e-slT and rcc d P .  For the data of 
figure 3 wit8h d = 1/20 we find 7 = 2.0 scans so that r = 0.005d-2 scans. From the 
theory of heat conduction (Carslaw & Jaeger 1959, 53.4) we obtain a similar 
result with a time constant l /7r2. Hence, from the data of figure 3 we can relate 
the number of scans s to the dimensionless time t by 

t N (20OdZ/7r2) s. (11)  

We note the important result that as the critical Rayleigh number is 
approached (from above) the time for the establishment of the steady motion is 
considerably larger than the time to heat the slab solely by conduction. For 
example, at A = 50, as shown in figure 3, the solution has converged by s E 80 
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when, from ( 1  I ) ,  t x 40/n2, corresponding to a rate 40 times slower than that of 
conduction alone. For this reason attempts to study the instability of a layer of 
fluid suddenly heated from below, by the assumption that the temperature field 
is quasi-steady, are bound to fail (Foster 1965). 

4.3. Heat transfer : quadratic region 

The Nusselt number has been evaluated for some of the numerical solutions. 
These values are given in table 1. They show, within the numerical accuracy, for 
A > 40 that approximately Ncc A .  The values are in excellent agreement with 
the laboratory values. 

A 

45 
50 
60 
70 
80 
90 
100 

l/d = 10 15 20 25 
- - -_ (1.09) 

>1.01 1.19 1.26 1.30 
1.36 1.51 1.58 1.62 
- - - 1.87 
1.80 1.96 2.04 2.08 

- 2,27 
2.09 2.28 2.37 (2.42) 
- - 

30 40 00 

- - 1.20 
- 1.36 

1.64 - 1.70 
1.90 - 1.92 
2.12 - 2.02 
2.30 - 2-33 
2.46 2.51 2.62 

- 

100Nm/A 
2.66 
2.73 
2.83 
2.75 
2.52 
2.58 
2.62 

TABLE 1. Numerical values of the Nusselt number N ( A ,  d )  in a square box with mesh 
spacing d and Rayleigh number A. The values d = co are obtained assuming N,  - N N d2, 
and are cstimatcd to  about _+ 2 yo. The values in brackets are for l/d = 24. (PM 1-32.) 

4.4. The flow jield for 1 9 1 
When 19 1, the flow field has either no motion or is composed of cells. This 
cellular regime is predicted by the linear theory and confirmed both in the 
laboratory and numerically. 

Figure 4 shows the temperature distribution? in a half-cell for 1 9 1 at various 
Rayleigh numbers, obtained numerically. Below A + 40, $ = 0 and 0 = 1-2.  

The numerical solution is very stable; any disturbance decays rapidly. As 
A increases beyond 40 the isotherms steepen till mushroom-like distributions are 
produced. This feature has already been pointed out by Wooding (1957), Elder 
(1958) and Donaldson (1962). 

Figure 5 shows the stream function and the advection at  A = 120. The form 
of the stream function is not greatly different from its value near A, except that 
it is a little twisted. For 1 + 00 with equations ( 2 ) ,  it is readily seen that the phase 
of the cellular motion is theoretically indeterminate. Both in the laboratory and 
numerically it is found that if 1 %  1 but finite the phase is determined by the 
motion in the ends of the slab (see $5 5.1, 5.3). 

4.5. Discussion of the heat transfer data 

A result of the form (6) is to be expected. When A 9 A, so that there is a boundary 
layer on z = 0, we have by (4) that N N 116 where Sis a measure of the boundary- 
layer thickness. But if W is a vertical velocity scale typical of the layer it follows 

Not,e: in these figures the vertical scalc is 5/3 of the horizontal scale. 
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from ( 2 c ) ,  assuming S,, B Ox,, that W N 118. Finally, we note from the z-compo- 
nent of ( 2 b )  that W N A .  Hence we expect N N A .  This result, therefore, implies 
that there is a balance between buoyancy forces and viscous forces and that 
while the heat enters the slab by conduction it is carried away from the immediate 
vicinity of the heated surface by vertical advection which is dominant in the 
outer portion of the boundary layer on the heated surface. 

~ 

A=50 60 80 100 

Temperature 
120 

FIGURE 4. Temperature distribution in a half-cell calculated a t  Rayleigh number 
A = 50, 60, 80, 100, 120. Isotherms drawn at intervale O(0.2)l. Mesh 21 x 21. 

5.707 
Stream function 

18.14 
Advection 

FIGURE 5. Stream function and advection in a half-cell calculated at  Rayleigh number 
A = 120. Contours drawn a t  intervals of -1(0.2)1 of the maximum absolute value 
(indicated below the figure). Mesh 31 x 21. 

The consistency of both the experimental and the numerical data in the quad- 
ratic region of the empirical expression (6) confirms the experimental procedure, 
the validity of the Hele-Shaw cell approximation for non-isothermal flows and 
the numerical method. We may therefore proceed using the numerical method with 
some confidence. Our interest now will concentrate on the role of different 
boundary conditions from those used above. While our immediate objective is 
to test the numerical scheme under diverse boundary conditions the flows are of 
considerable interest in themselves. 
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5. End-effects 
In spite of the numerous studies of free convection, it is surprising to note that 

there has been relatively little consideration of end-effects, viz. for the present 
problem the peculiarities which arise when the aspect ratios 1 and e are finite. 

~~ 

1.000- 

1.000 

5.230 

5305 

1000 5156 
FIGURE 6. End-effects. Isotherms and streamlines in a slab of horizontal extent e = 10 
calculated at  Rayleigh number A = 80, mesh spacing d = -& and various values of the 
heater length I ;  (a) and (b) ,  I = 2;  (c) and (d), 1 = 3; ( e )  and (f) ,  I = 4; (9 )  and (h) I = 6 .  
Apart from the contour 0.03, the contours are at intervals -1(0*2)l of the maximum 
value of the function. 

There is a great variety of end-effects in free convection. Some of the author’s 
experiments were reported at the 1963 British Theoretical Mechanics conference 
at Liverpool when his attention was directed to somewhat similar phenomena in 
Couette flow being studied by Coles (1965). To take an analogy from atomic 
physics, the end-effects tend to remove a degeneracy of the system. Much work 
remains in this subject but the present results are of some interest. 
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5.1. Numerical experiments on  a simple end-effect 

The numerical solution for a flow in a slab of horizontal extent e = 10 for 
1 = 2 , 3 , 4 ,  and 6 at  A = 80 are shown in figure 6. Only the right-hand half ofthe 
flow is shown. 
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FIGURE 7. End-effects, role of heater length I on: (a)  wavelength h of inner Rayleigh cell; 
( b )  Nusselt number N ;  (c) maximum value of the streamfunction $e (of the end cells). 
Parameters as in figure 6. (PM 47-65.) 
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For 1 = 2,  figures 6(a)  and (b) ,  there are two regions of opposite circulation. 
These end cells give a fairly narrow column of heated fluid rising above the heated 
region with a more diffuse return flow in the outer portion of the slab. We note 
that the flow distant from the heater, near the vertical walls, is very weak. How- 
ever, for l > 2 in addition to the end cells there are nearly square cells, occurring 
in pairs of opposite circulation, above the central portion of the heated surface. 
We shall call these Rayleigh cells. For 1 = 3, figures 6 ( c )  and ( d ) ,  there is one pair 
of Rayleigh cells. Incidentally, we note that the flow on x = 0 is downward. 
Clearly the phase of the Rayleigh cells is set by their number and the phase of 
the end cells, which is always as in figure 6 (b) .  In  figures 6 ( e )  and (f) with 1 = 4, 
the motion is as for 1 = 3 except that the Rayleigh cells have a much larger 
wavelength. For 1 = 6, figures 6(g) and (h), three pairs of Rayleigh cells appear. 

The gross changes of the system as 1 is varied are summarized in figure 7 which 
shows: the wavelength h of the inner pair of Rayleigh cells for the same arrange- 
ment used in figure 6; the Nusselt number N ;  and the maximum value of the 
streamfunction $,, which in fact corresponds to that of the end cells. 

The breaks in the curves correspond to the appearance of pairs of Rayleigh 
cells at  1 = 2.0, 4.3, 5-4. The changes in wavelength are closely paralleled by 
corresponding changes in N and $,. 

5.2. Linear anulysis of the simple end-effect 

A partial understanding of the above phenomena is possible with an analysis 
similar to that used by Zierep (1961) for the corresponding problem with a viscous 
fluid. 

As A+O, $ + O  and V2B-+0, so that we write the temperature field as 
O=p( l -z ) ;wherep= 1forIxl <@tobecalledregionlandP=Oforlxl > $ l ,  
to be called region 2 .  This is a rather crude representation of 8 but sufficient for 
the moment. Consider a steady perturbation (Or ,  $') superimposed on this state 
of rest. Retaining only first-order quantities 

{V4+pA(a2/t3~2)} (O' ,  $') = 0, (12) 
where (O',$') = 0 on z = 0 , l .  

x 3 0. Suitable solutions for regions 1, 2 are 
The field is assumed symmetrical about x = 0, so we refer only to the region 

0; = u cos mrrx sin nm, 

8; = u cos amrrl e-n(X-41) sin nnz, 

where n = 1,2,3, ..., u is an arbitrary constant and we have placed 0; = 0; on 
x = 41. Note that, when 1 is an odd integer and m = 1,8; = 0. This feature arises 
from the approximation to the original temperature field. These are solutions of 
( 12) provided 

A has a minimum value when m = n of 4r2n2. The first occasion when this is 
possible is when n = 1. Hence only for A 2 4n2 is the above solution possible. 
For 1 = 00, 4772 is the critical Rayleigh number A ,  (Lapwood 1948). For 1 finite 
and A < 4n2 the complex roots for m must be used. Here we simply consider the 

A = n2(m2+n2)2/m2. (14) 
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situation A = 4n2, m = n = 1. It is seen that square cells appear in 1x1 < $1 for 
I 2 2; with I < 2 there is merely a single column of rising heated fluid. The end 
cells decay exponentially in the lateral direction. 

This analysis suggests that successive pairs of Rayleigh cells will appear when 
1 = 2,4 ,6 ,  . . . . In the numerical calculations of $5.1 we found these values to be 
1 = 2.0, 4.3, 5.4 at A = 80. The flow at A = 80 cannot be expected to satisfy the 
linear theory, yet the progression of events is moderately well described. 

A very crude discussion of the variation of the Nusselt number as a function of 
1 and e is now possible. Let us assume as in (6) that each Rayleigh cell transfers 
an amount of heat corresponding to a Nusselt number of aA and each end cell an 
amount a‘A, where a is a constant and a‘ is independent of A. Then, if we write 
I = 2(c + r )  where r is an integer, r is the number of half Rayleigh cells and c the 
length of the heated boundary accessible to an end cell. Hence the total Nusselt 
number is 2(ca‘ + ra). We try various guesses for the form of a’. If a’ = const., the 
curve N ( l / e )  continuously rises between the breaks which occur when r increases 
by unity, contrary to the data of figure 7 ( b ) .  If a ’ c ~  1/c the curve similarly falls. 
A crude compromise is a’ = a/cJ, where we choose for want of a better assumption 
a‘ = a when c = 1. This leads to a curve roughly similar to that of figure 7 ( b )  but 
with the breaks at r = 2 , 4 , 6 ,  .... The principal oversimplification of the above 
discussion is its neglect of the interaction between the end cells and the Rayleigh 
cells, clearly shown in the data of figures 6 and 7 and especially in the experiment 
of the following section. Nevertheless, the general form of the relation #(I, e )  is 
indicated. Finally, we note therefore that the rapid fall in N for 1 5 0.5 shown in 
figure 7 (b)  is probably a finite difference effect, viz. that the heater is represented 
by too few mesh points. 

5.3.  Hysteresis 
One of the most interesting effects in the experiments with the Hele-Shaw cell 
is found with 1 finite but in which the horizontal extent of the slab is very much 
larger thanl. Figure 8, plate 1, isaphotographic sequence of the flow revealed with 
suspended aluminium powder. Each of these flows has been left for sufficient time 
for it to come into a steady state. Figure 8 ( a )  shows a regular group of nearly 
square cells above the heated surface with weaker circulations in the end regions. 
The motion is quite steady. In  figure 8 (b)  a t  a somewhat higher Rayleigh number 
the distribution and width of the cells is rather irregular. The motion is very 
slowly but continually changing. We note the growth of the cells in the end 
regions. This process continues in figures 8 (c), (d). In  figure 8 (d )  the inner cells 
are again nearly square and the motion is nearly as steady as in figure 8 (a). In 
figures 8 ( e ) ,  ( f )  the process continues. It is seen that the progressive change in the 
flow is dominated by the growth and encroachment of the cells in the end region. 
In general there are an even number of Rayleigh cells and the motion is steadiest 
when the Rayleigh cells are square. 

The motion of figure S(f )  persists to large Rayleigh numbers. On the other 
hand,if the Rayleighnumberisnow very slowly reduced, the motion of figure 8 ( f )  
persists to Rayleigh numbers about that of figure 8 (a).  The first reappearance is 
shown in figure S(g). Here we have a pronounced hysteresis. It follows that to 
specify the thermodynamic state of the system the path by which that state was 
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achieved should also be specified. A somewhat similar hysteresis, although more 
complex, has been observed by Coles (1965) for the flow between concentric 
rotating cylinders. 

5.4. A comment on an experiment by Malkus 

It is possible that this phenomenon of the appearance of end-effects and in parti- 
cular the variation in horizontal wave-number provides an alternative explana- 
tion to that given by Malkus (1954) for his measurements of ‘transitions’ in 
convection in a viscous fluid. 

Malkus has reported, in his experiment to determine the relation between the 
heat transfer and the Rayleigh number for a horizontal layer of a viscous fluid, 
that there were discontinuous changes in the slope of the curve. He has inter- 
preted these changes as due to the progressive appearance of higher modes of the 
linear stability analysis. That is, changes occur when the Rayleigh number is 
sufficiently high for the vertical wave-number to have values n, 2n, 3n, . . .. 

It has not been realized hitherto that an alternative possibility could be the 
availability of additional horizontal wave-numbers. Some experiments by the 
author for the Rayleigh-BBnard problem also reveal pronounced end-effects. 
I have not; however, been able to reproduce the rather small changes of slope in 
N ( A )  found by Malkus. These experiments are to be reported. 

6. Mass discharge 
A problem of particular interest to the geophysicist for studies of both hydro- 

thermal systems and penetrative convection in the upper mantle is the flow 
when it is dominated by mass discharge. The laboratory experiments and their 
relation to hydrothermal systems have already been described (Elder 1965) ; here 
we shall discuss the numerical experiments. 

Our particular interest, keeping in mind other possible applications of the 
numerical procedure, is to show that the method used below is satisfactory in 
dealing with the boundary conditions which arise with mass discharge in a 
convective system. 

Two extreme possibilities arise: forced and natural discharge. In  forced dis- 
charge we consider that the discharge arises from the ambient pressure field, 
e.g. due to variations of the water-table level. In natural discharge we consider 
that the ambient variations of the pressure are negligible ; the discharge is driven 
solely by the pressure field arising from the differential heating of the fluid. 

6.1. Forced discharge 

Figure 9 shows the results of a calculation with forced discharge. The vertical 
velocity 1c., has been specified on z = 1, to be finite on 1x1 < 4 and elsewhere to 
be zero, and the velocity has been required to be horizontal on the vertical ends 
of the slab. The flow field for A = 0, obtained from Vz$ = 0, is also shown in 
figure 9, together with the flow field when there is no discharge. The motion when 
there is both discharge and convection can be regarded as a non-linear inter- 
action of these two fields. The discharge aids the motion in the end regions so that 
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7574 

972 1 

FIGURE 9. Forced discharge, calculated distributions of temperature and stream function. 
Discharge over zone of width 1. A = 100, I = 2 ,  e = 5,101 x 21 mesh. Only the right ba!f 
of the flow is shown. (a )  and (d) no discharge; ( b )  and ( e )  discharge velocity 2.5; ( c )  and (f) 
discharge velocity 5-0;  (9)  A = 0 with discharge. (POR 36.) 
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the ordinary cellular mode is annihilated with the discharge used here. An 
important feature (Elder 1965) of the flow is that even at quite large discharge 
rates some of the fluid is recirculated even though, when the discharge velocity 
is 5 as in figure 6 ( c ) ,  the problem is essentially one of forced convection. 

6.2. Natural discharge 

For a natural discharge we assume that the pressure p is maintained at zero on 
z = 1. Physically this implies that any fluid which passes above z = 1 is allowed 
to run away and is lost to  the system. Here the return flow is also allowed to enter 
only on z = 1. The calculations proceed thus. After each scan of (3) we solve 

V2p = AB,, (15) 

I 

4127 
FIGURE 10. Natural discharge, calculated isotherms (above) and stream function. 

A = 50, E = 1 ,  e = 5, mesh 101 x 21. (POR 67.) 

which follow from (2a)  and (2b). Since on x = 1 we requirep = 0 and 0 = 0, from 
( 2 b )  the surface vertical velocity q+= = -pz. In the calculation we therefore, at 
the end of each scan, simply impose the stream function on z = 1 to be 

r x  

where in (16) p is the solution of (15). This has proved to be a satisfactory scheme 
although somewhat slower than the simple scheme (3). 

Figure 10 shows the temperature and stream function distributions for a 
Rayleigh number A = 50. Recharge occurs over the bulk of the upper surface, 
the heated fluid rises as a fairly thin column even at  this rather low Rayleigh 
number, and only about 30 yo of the fluid in the plume is recirculated. In  natural 
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systems with very large Rayleigh numbers we anticipate that only a very small 
portion of fluid is recirculated. 

Figure 11 shows two characteristic parameters of the flow. Figure 11 (a )  shows 
the local Nusselt number N' = N'(x)  on z = 0 and x = 1. The pronounced dis- 
continuity at the ends of the heated surface is simply a feature of our boundary 
conditions. What is of considerable geophysical interest is that the heat flux on 
z = 1 falls rapidly to zero outside the region of the discharge. Figure l l ( b )  shows 
the discharge velocity. Discharge occurs over a region of width 1.4; elsewhere the 
flow is into the slab. This inward flow is sufficient to reduce the surface heat flux 
to zero. 

10 

5 

N 

0 

-5 I I I I I 
-2  -1 0 1 2 

X 

(0) 

0 1 2 
X 

( b )  

-5 - 2  -1 

FIGURE 11. Natural discharge, parameters as in figure 10. (a )  Heat flux N';  
( b )  velocity through the upper surface W .  

In  the Hele-Shaw cell the natural discharge is simply arranged by having a 
small gap in the lid (through which the coolant is circulated) leading into an 
upper wide chamber full of fluid. Figure 12, plate 2 ,  is a photograph of such a flow. 
It should be compared with figure 10. Even though it is a t  a much higher Rayleigh 
number, the gross features, including the recirculation, are similar to the 
numerical solution. 

The solution to the linearized problem, following Lapwood (1948), is obtained 
simply by requiring n = +, 4, ... in (13) so that p = 0 on z = 1. Motion is first 
possible with n = 4 and the corresponding critical Rayleigh number of n2. Other- 
wise there is no novelty in this solution. However, at Rayleigh numbers much 
greater than critical the motion is seen to be dominated by a boundary layer on 
the heated surface and a plume rising above it. Wooding (1963) has given a most 
revealing analysis of the flow in the plume when the flow is sufficiently dominated 
by the discharge that there is minor recirculation of fluid; i.e. fluid particles make 
only a single pass through the system. Since in the fluid surrounding the plume 
p = 0,  if the plume is sufficiently thin, to the order of the boundary-layer approxi- 
mation, p = 0 everywhere and hence, by ( 2 b ) ,  W = AB. This relation implies 
a balance between viscous and buoyancy forces. 
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7. Concluding remarks 
Some of the above flows are crudely analogous to the corresponding flows of 

a viscous fluid. This is particularly the case when inertial effects, which arise 
with a viscous fluid, are small, either because the Prandtl number is large or 
because, near the critical Rayleigh number, the advection of vorticity is negli- 
gible. There is the important difference, however, that flow in a porous medium 
provides a realization of so-called free-free boundary conditions, whereas, while 
frequently used in a preliminary analysis, these are rather artificial boundary 
conditions for a viscous fluid. 

Near the critical Rayleigh number, the flows are very similar, as pointed out 
in the analyses of Horton & Rogers (1945) and Lapwood (1948). The essential 
difference is that, while in both cases inertial effects are negligible, we must allow 
for diffusion of vorticity in a viscous fluid. This merely changes the operator V4 
in (12) to V6, an increase by a factor of n2(m2+n2). Consequently the critical 
Rayleigh number is increased from 4n2 to 27;rr4/4 and the width of the cells by 4 2  
(Chandrasekhar 196 1). 

Above the critical Rayleigh number, (6) suggests that N + A/A,, so that we 
might anticipate a similar relation in a viscous fluid. Inspection of Silveston’s 
(1958) measurements shows that indeed N* = A*/A: up to N* x 1-5, sug- 
gesting that inertial effects are negligible here. Beyond this value, however, the 
experimental curve falls rapidly below the linear relation. This is undoubtedly 
due to the rapid increase in the advection of vorticity and the growth of viscous 
boundary layers. Nevertheless, both flows are cellular and strongly influenced 
by end-effects. A study of end-effects for free convection of a viscous fluid will be 
reported elsewhere. It is sufficient here to note that as with flow in a porous 
medium the phase of the cellular motion, the distribution of horizontal wave- 
numbers, and hysteresis are dominated by the end cells. 

The laboratory experiments referred to  in 5 3 were done at Geophysics Division, 
Department of Scientific and Industrial Research, Wellington, New Zealand. 
I am very grateful for the assistance of Mr W. J. P. MacDonald. The numerical 
study was supported by National Science Foundation Grant GP-2414 and Office 
of Naval Research Contract Nonr-2216 while I was at  the Institute of Geophysics 
and Planetary Physics, La Jolla. The numerical work was done on the CDC 3600 
computer at the University of California, San Diego computing centre. The 
manuscript was written while I was supported by a grant from the British 
Admiralty. 
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FIGURE 8. End-effect in a thin cavity. Photographs of steady flows uith medicinal paraffin 
in a Helc-Shaw cell of depth 2.0 cm, lcngth 30.0 cm, width 0 6 em; heated strip of length 
10 cm. Values of lo-* A :  (a )  1.02, ( b )  1.72, (c) 2.24, (c l )  2.38, ( e )  2.90, (f) 3.97, (y) 1.10 
(HSI: 1-9). 
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FIGGRE 12. Natural discharge. Photograph of steady flow in a Hcle-Shaw c ~ l l  with : 
H = L = 10 cm, E = 50 em, b = 0.318 cm, at ltaylcigh number A = 420. Compare with 
figure 10. 
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